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ABSTRACT 

In this paper  we s tudy families of spaces which are similar in spirit to 

the Rosenthal class. We let ,So be the infinite dimensional sequence space 

where the norm of a given null-sequence (at) is given as follows, 

II(at)]lso = II ~ xlalh,HvMO + sup laxl. 

Here (xi) is a fixed sequence of bounded scalars. We show that  these 

spaces are isomorphic to complemented subspaces of VMO, and clas- 

sify their isomorphic types as follows: ,S o is isomorphic either to co, to 

( ~  BMOn)o,  or to VMO. The space ,So arises as endpoint  of the scale 

,SP, 2 < p < ec, where the norm of a sequence (a l )  is given by 

12/ph/Lp 
II(al)l ls~ = a/mr i i i1/p + lall  p 

The isomorphic types of this class are shown to be L p and e p. 
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1. I n t r o d u c t i o n  

The results of this paper are centered around well-known conjectures expressing 

dichotomies for complemented subspaces of VMO. Let X be such a comple- 

mented subspace. The first conjectured dichotomy states that  either X contains 

a complemented copy of (~-] 2 ~n)o, or X is isomorphic to co. Second, either X 

contains a complemented copy of ( ~ B M O n ) o ,  or X is isomorphic to a com- 

plemented subspace of ( ~  ~2n)0. Equally important is the unsolved problem 

whether there are infinitely many isomorphically different complemented sub- 

spaces of VMO. The known examples include VMO,  e 2, (}-] ~2)0, the above three, 

Co, (}-~ BMOn)o, ~2 ( ~  n)o, and their direct sums. The space of all null sequences 

(an) such that 
\ 512 

EWna2n)  +suPiani <oo 

is a further example of a Banach space isomorphic to a complemented subspace 

of VMO. It is isomorphically different from the first group of examples when 

limwn -- 0, and ~ Iwnl = (~. We call it then the Rosenthal space. 

In this paper we study families of spaces which are similar in spirit to the 

Rosenthal class. It was believed, for some time, that  they might be the key to 

the construction of many more examples of complemented subspaces in VMO. 

We let $0 be the infinite dimensional sequence space where the norm of a given 

null-sequence (ai) is given as follows, 

I I ( a D I I s o  = II ~-'] xsashsllvMo + sup l a i I  . 

Here (xs) is a fixed sequence of bounded scalars. We show that these spaces 

are isomorphic to complemented subspaces of VMO, and we determine their 

isomorphic type. Specifically, we prove that  $0 is isomorphic either to co, to 

(}-~ BMOn)o, or to VMO. Thus we provide some support for the above dichotomy 

conjectures. 

The space S o arises as endpoint of the scale S p, 2 _< p < c~, where the norm 

of a sequence (as) is given by 

' (Z'aI") II(al)llsp = ff_....~aIx I -I- 

Very recently D. Kleper and G. Schechtman showed that SP is isomorphic to 

a complemented subspace of L p, for 2 <__ p < oo. The present paper continues 

this line of investigation, and gives the isomorphic classification for SP: When 

2 _< p < co the infinite dimensional space S p is isomorphic to L p or gP. For 
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this classification problem the detour to VMO turned out to be instructive and 

rewarding. For instance, we read off the isomorphic type of ,5 p, from a stopping 

time decomposition {7-/K : K E $}, which is a common tool in the study of VMO. 

For K E 3, we let ?-/K be the m a x i m a l  b lock  of intervals satisfying 

E 2 2 XLh L ~ 2. 
LE~r{ K 

Our Theorems 2, 4 and 5 show that the Carleson constant of £, 

1 
sup E }Jl, 

I ~ JCI,JE$ 

and the measure of l i m s u p /  are the isomorphic invariants that determine the 

Banach space structure of the class ,5 p, 2 < p _< oo. 

2. C o m p l e m e n t e d  subspaces  of  B M O  

In this section we define the representation of the spaces S p, respectively S °~, 

as subspaces of L p, respectively BMO. We will also define the stopping time 

decomposition mentioned in the introduction. These two constructions and their 

interplay will be analyzed carefully in this and the remaining sections of this 

paper. We also establish here the BMO estimates for the induced orthogonal 

projection. 

We let {hi} denote the L°%normalized Haar basis, indexed by dyadic intervals. 

For a sequence of scalars (ai) we say that ~ aihr belongs to BMO if 

1 sup ~ y~ a~lII < oo. 
icJ 

For the above expression we write I I Y~. a,h~l luMo. 
Now fix a sequence of scalars x ,  E R, such that Ix, I < 1. We define the infinite 

dimensional sequence spaces $oo. The norm of a bounded sequence (a,) is given 

by 

[l(a*)lls~ = E x l a l h i  + s u p l a ,  I. 
BMO 

The norm depends of course explicitly on the choice of scalars xs E R used on 

the right hand side of the above expression. Nevertheless our notation suppresses 

this dependence; for the resulting spaces we write simply ,9°% Incidentally, $oo 

is a subspace of BMO ®e ~ .  Let {e, } denote the unit vector basis of t °°, indexed 
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for convenience by dyadic intervals. Then the subspace of BMO (~te ~ ,  spanned 

by the vectors 

bl = x l -  hr ~ e l ,  

is clearly isometric to S ~ .  Indeed for any linear combination, ~albrE BMO ® ~ ,  

we have the following expression for the norm, 

alb l  BMOGg c¢ : ~ a l x l h i  BMO @ sup Jail. 

Our first theorem concerning these spaces states that each of them is iso- 

morphic to a complemented subspace of BMO. The norm of embedding and 

projection are independent of the choice the scalars xx e R. 

THEOREM 1: For every choice of scalars x1 ¢ R + with IXlI ( 1, there exists a 
sequence {gI} which in BMO is equivalent to the sequence {xl • ht (~ er} in the 
space BMO ®C °°. Moreover the weak *-dosure of span{g1} is complemented in 
BMO. 

Proof: Let XI E R + be a sequence of scalars with ]XI] < 1. For convenience 

we assume that  each of the numbers x/  is a negative power of 2. Then choose 

m0 < <  ml < <  m2. . - .  Let :Di be the dyadic intervals of length 2 -m~. First 

define the collection C[o,1] = / )0 .  Then select a collection B[o,1] C_ C[o,1] such that 

X~o,x ] = IB[0,11[, 

where B[o,ll is the pointset covered by B[o,1]. Denote by I1 the left half of the 

unit interval and by /2 the right half of the unit interval. Next fix J C C[o,ll, 

and select disjoint collections of pairwise disjoint dyadic intervals C h (J) C D1 

and Q2 (J) C /)1 so that the pointset covered by CI~ is contained in J and has 

measure equal to IJ]/2. Moreover, we select the intervals in such a way that the 

relative density of CI~ (J) is the same on the left half of d and on the right half 

of J, that  is, 

]CI,(J) n ajl = ½lJJl, 
where C h (J) is the pointset covered by CI~ (J) ,  and where J1 is the left half of J ,  

and J2 is the right half of J.  Next we select B h (J) C_ Ci1 (J) and 13 h (J) C_ CI2 (J) 
such that 

1 }B'I(J)] and ~ lx~z _ ]BIz(J)l 
,.2X21 -- ig I IJI ' 
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where B~ (J) is the pointset covered by the collection BI~ (J). Now we take the 

union over J E C[0,1] obtaining for i E {1, 2} the collections 

c,,= U c,,(¢) and B,,= U B,~(J). 
JEC[o,i] JEC[o,1] 

We continue by induction following the pattern of the first step. Thus for each 

I we construct two families, B1 and CI, of pairwise disjoint dyadic intervals 

satisfying the following properties: The collection BI is a subcollection of Cr. Let 

Cj  be the pointset covered by the collection Cg. Then [Cj I -- IJI, and moreover 

the family {CI} is a nested family of sets, so that Ci C_ Cj  if I C_ J. Note that 

if K E CI and L E Cj and K C_ L then we have CI C_ C j ,  or equivalently, I c_ J. 

Moreover, we observe the following: Fix a dyadic interval J, and let 

Suppose that I is a dyadic interval which is strictly contained in J .  Then for 

K E B j ,  we have the following identities expressing a strong degree of self- 

similarity, 

1 f 2 1 III 
g~ = I l g z l l 2 ~  = x~ I/el Igl" Ia l  

Having made these observations it is easy to show that the orthogonal projec- 

tion P defined by 

P(f) = ~ f ' ~  Itg, ll~ 
I 

is bounded in BMO. To prove boundedness of P,  we fix f E BMO and let 

g = P( f ) .  Then we fix a dyadic interval J and K E •j. We calculate using the 

previous observation, 

g j  ~2 1 2 1 

We continue estimating the first summand of the above expression. Note that 

IIgjII22 = [BjI, and that the Haar support of gj  is the collection Bj.  Hence by 
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Bessel's inequality and Cauchy Schwartz we estimate as follows: 

ga \2 1 [ 1 E (f, hK)] 2 1 
( .I'II~AI~I IIg~ll~ = ~ IBJI KE~a 

1 ~ II~1 1 <-IDeal Ke• ~ ~ (f'hK)21Kl-' 
j K E ] 3 j  

-<CIIfll~3MO- 
For the term on the right hand side we use Besset's inequality. Recall that  the 

supports of the functions gs are contained in a set Ca with ICJI - I a l .  Recall 

also that the collection {CI} is a nested family of sets. Now we estimate using 

Bessel's inequality and the defintion of BMO: 

If, gI \2 1 1 E E (f,h~:)2lh'l - ' 
ICJ KC_Cj 

--<llfll~MO. 
Thus we showed that the orthogonal projection P is bounded on BMO. 

With a similar calculation we evaluate now the norm in BMO of a linear 

combination g = ~ atgs. To this end we fix a dyadic interval J and K E Bj.  

Then we calculate using the previous observation, 

1 S K g  l f K 2  I ~ c j l f K 2 2  IS~'l - ~-~ g -- [ -~  asgz 

=aS + E 2 2 ISl 
ICJ alggI ~ l "  

From this identi ty we deduce easily the following equivalence of norms, 

IIglIBMo ~ tl ~-~azxshsl]BMO + sup lall. 
Summing up, we showed that the weak *-closed linear span of {xs • hs ® e,} in 

BMO ®ge¢ is isomorphic to a complemented subspace of BMO, namely to the 

weak *-closed linear span of {gI}. I 

THEOREM 2: For every choice of scalars xi E R with [xs[ _< 1 the resulting space 
Soo is isomorphic to BMO or to f~.  If ~ xshi C BMO then SO~ is isomorphic 
to ~ ,  and if ~ xshs ~ BMO then S ~ is isomorphic to BMO. 

Before we start the proof we recall convenient notation and useful convention. 

For a dyadic interval K we set 

Q(K) = {J  c_ K :  J is dyadic}. 
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Next we recall when a collection of dyadic intervals ?/K is called a b lock  of  

in tervals .  First we demand that  K C 7/i<, and that  J'IK C_ Q(K). Second, if 

I E J/K, and if J is a dyadic interval satisfying K C_ J C_ I,  then we have that 

J C J/K. Now we turn to the proof of Theorem 2. 

Proof: We begin by performing a stopping time argument on the function f = 

~ x l h x .  For the unit interval [0, 1] we define J-/[oa] to be the largest block of 

dyadic intervals satisfying [0, 1] E 7-/[o,1] and 

2 2  
XLh L ~ 2. 

L674[oA] 

The maximality condition in the definition of 7-/[0,1] and the fact that Ixll _< 1 

imply the following lower estimate. If J E Q([0,1]) \ 7/[o,1] then 

2 2  
xnh L _> 1 on the interval J. 

LET-/(O,ll 

Next let K be a maximal interval in the collection Q([0, 1]) \ 7-/[o,1]. Then define 

7/I< to be the maximal block of dyadic intervals contained in Q(K) such that 

22 
XLh L ~ 2. 

LE~K 

Note that if J E Q(K) ". 741< then 

2 2  
xLh L >_ 1 on the interval J. 

LET-LK 

This processs defines a decomposition of the dyadic intervals into a family of 

blocks {7-/K : K E $}. In this way we also obtain a decomposition of the function 

f into pieces fK = ~-:~L~U~ XLhL. This completes the first part of the proof. 

Suppose now that f = ~ x t h x  C BMO. Let {at} be a given sequence of 

scalars. Then we have the following upper bound, 

E a l x l h '  BMO -< sup latl"  xtht ,MO 

_< sup laxl" IISIIBMO. 

Inserting this estimate in the equation defining the norm of S ~  shows that  ,5 ~ 

is isomorphic to e °° when f E BMO. 

Now we turn to the last part of the proof examining consequences of the fact 

that f ~ BMO. We first observe that  if f ~ BMO then the index $ satisfies, 

1 
sup  E 10rI = oo. 

I ~ .IE$,JC__I 
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The condensation lemma in [CG] implies that for any n G N, there exists a 

dyadic interval A E $ such that 

IGn(A,$)I __ IAI(1-  8-n) ,  

where Gn(A, £) C A is the set of points x E A, which are contained in n or more 

different intervals J C $ M Q(A). 
Now let X'[0,1 ] = {A} be the collection containg just the interval A. Let J1 

be the left half of [0, 1] and let ./2 be the right half of [0, 1]. We also let A1 be 

the left half of A and let A2 be the right half of A. Then define Xj~ to be the 

collection of maximal intervals in $, which are contained in Ji. We call this the 

first step of the Gamlen-Gaudet  construction. Next let K be any interval in A:'j~. 

Let K1 be the left half of K and let K2 be the right half of K. Then let X(h~) 
be the collection of maximal intervals in C, which are contained in Kj.  We let 

Jil be the left half of Ji and we let Ji2 be the right half of Ji. We will now take 

the union and put 

xj, = [_J x(Kj). 
KEX.~ 

This is called the second step of the Gamlen Gaudet construction. We repeat the 

basic step of the Gamlen-Gaudet  construction at n times. With the assertion of 

the condensation lemma we obtain collections of pairwise disjoint dyadic intervals 

• ~j  C ~, for [J[ > 2 -n,  satisfying the following properties (see [M]). 

1. For I C_ J let Xr be the pointset covered by the collection XI. Then for 

every K E Xj, 

(1/2)IKI.  III < IJl" IX~ n KI _< 21KI-II1. 

2. If XI N Xj  :/: 0, then either Xx C Xj  or Xj  C XI. 
3. If Xj  c_ XI, then J C_ I.  

4. IAI . IJI /2  <_ IxH < 21dl. IJI. 
Now define 

G j  = 

and also 

E E gL, 
K E X j  LET"IK 

 J=E Ex hL • 
KCr.Xj LET"iK 

Recall that we used {eL} indexed by dyadic intervals to denote the unit vector 

basis of g~. Then put 

F J = E E e L .  
K E X j  LE?-IK 
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In the proof of the following statements the systems {Hj} and {Fj} play the 

role of auxiliary tools: First, we claim that in BMO the system {Gj : IJ] :> 2 -n} 

is equivalent to the Haar basis {hj : IJI >_ 2-n}. And second, the orthogonal 
projection Q defined by 

Q ( y )  = 

satisfies 

for y E span{gj}. 

G1 ) G,  

{I:1/1_>2-~} 

IIQ(Y)IIBMo ~ 411YI[BMO, 

We begin by showing the first claim doing the calculations with the system 

{H j}. We fix J and let J1 be the left half of J and let J2 be the right half of 

J. Note that  the square function S2(Hj) = ~--~h'Eafa ~LETt,( 2 2 XLh L satisfies the 
pointwise upper estimate S2(Hj)  _< 2, and also the following lower estimates, 

S2(Hj)_>I on the s e t X j  1UX&. 

From this it follows easily that 

E a j H j  RMO "~ E a a h a  BMO" 
Next we claim that 

II E aaFalle ~ = sup laat. 
To see this fix two dyadic intervals J ~ J ' .  Then the corresponding index sets 

given by Zj = [.JKexj ~K and Za, = UKEx~ ?-/g are disjoint collections of 
intervals. This proves the claim. With Theorem 1, we have now the following 

equivalences proving the first claim, 

E aJGJ BMO ~ E aJHJ BMo+SUplall 

~" E ajha BMO" 
Now we give the BMO estimates showing the boundedness of the orthogonal 

projection Q defined on span{g1}. We let 

Then 

Y = E a l g I .  

(y, Gj)= E E aLX2LILI and IIGjII~= E E X2LIL[" 
KEXj LET"q.K KEXj LETiK 
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Combining the above expressions with HSlder's inequality gives 

(y, G j) 2 
ilaJii 2 - ~ ~ a2x2lLI. 

KEXj LE?-IK 

Recall that A'j consists of pairwise disjoint intervals, hence 

For K E X j,  let IK 
xn h b satisfies ELET-IK 2 2 

IXJl= ~ IKI. 
KEXj 

= ELET-IK XLhL. Then the square function S2(IK) = 

x2rlLI =/K S2(fK)" 
LCT-I.K 

Next, by the stopping time construction and the condensation lemma we obtain 

IKI2 _< _< 21KI. 

Taking the sum over K E Xj gives 

IxJI2 - < ~ f~ s=(f~) - < 21xJI. 
KEXj 

Now observe that for J fixed and for I strictly contained in J, and K E Xj,  we 
have the identities 

1 IIG~II~_ 1Nil 
[El JXjJ IxJI 

With the information collected so far we are now deriving estimates for 
]]Q(Y)[[BMO. We fix J and K E XJ; then we compute obtaining global esti- 

mates, 

l fK l fK (Y'Gj)2 fK G~ IKI [Q(Y)--~I Q(Y)I2 < IIGJll 4 + ~ (Y' G, ~2 1___ 
- rcJ I ] a i l l 2 1  [KI Ila, ll~ 

1 
-<sup[all2 + ~ E E a2LX2LIL[ 

ICJ LEXI 

<--sup]aI[2+ EaLXLhL ~MO 

2 

<- E argL 
BMO" 
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Finally, we point out that by the stopping time process we have the following 

local estimates. For any interval L C 7-/K with K E XI, 

1L--I a'l  <- c. 

Combining the local estimate and the global estimates above shows that  

IIQ(Y)IIBMO ~ CIlYlIBMO. 

Recall that BMOn denotes the finite dimensional subspace of BMO which is 

spanned by the Hear functions {hi :lII > 2-~}. So far we showed that  for each 

n E N there is a well-complemented copy of BMOn in span{g1}. We obtained 

these copies using only finite linear combinations of Hear functions. Therefore, 

we actually showed that  the infinte direct sum (~-~. BMOn)oo is isomorphic to a 

complemented subspace of (w * - span{g1}, [[. [[BMO). (Here w* - span denotes 

the weak-* closure of the linear span.) 

There exists a theorem of P. Wojtaszczyk to the effect that (~BMOn)oo  is 

isomorphic to BMO. (See [W, Theorem III.E.18].) Hence, by Theorem 1 and the 

Pelczynski decomposition, the space (w* - span{g1}, [[. [[BMO) is isomorphic to 

BMO when ~ xlhi  ~ BMO. | 

3. E x t e n s i o n  t o  L p, 2 < p < oc 

Recall that in section 2 we showed that the orthogonal projection onto the weak-* 

closed linear span of (gI}, given by 

I IIg/l12' 

is a bounded operator in BMO. It is also an operator of norm one in L 2. Thus 

by interpolation between BMO and L 2 and duality the orthogonal projection P 

is bounded on Lp, for 1 < p < oo. Hence the norm closed linear span of the 

system {gl} is a complemented subspace of L p, for 1 < p < oo. Now we will 

restrict our attention to the range 2 _< p < co, since for these values of p we 

obtain considerably more information about the system of functions {g~/][gi[lp}. 

THEOREM 3: In L p, oo > p > 2, the system gI/[[gI[[p, is equivalent to the system 

1-~./p hi 
xl Ilhrllp • e .  
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in LPO~ p, where {es} is the unit vector basis in £P and {hs} is the L °~ normalized 

Haar system. 

Proof" Let ai E i~ be a given sequence of coefficients. We will show that  then 

~ ~ alXl  iihiII---~ + ~ lasi~" 

To this end we fix n E N, and let I be a dyadic interval of length 2 -n.  Then 

consider K E CI. We let K1 be the left half of K and K2 be the right half of K.  

This gives the following collection of dyadic intervals, 

~-~n : U { K 1 , / i ' 2  : K C CI}, 

where the union is taken over all dyadic intervals I with II] -- 2 -n .  Note that  

7-/n is a collection of pairwise disjoint dyadic intervals covering the unit interval. 

Finally, let ~'n be the a-algebra generated by 7-/n. Next write 

dn = E aI gI 
{ l : i l i=2_.)  Ilglllp" 

The sequence {dn} is a martingale difference sequence with respect to the a- 

algebras {~'~}: That  is, E(dni~'n-1) = 0 and E(dn]5~) = d~. Next, we proceed 

by invoking a theorem of Burkholder to obtain 

Edn :'J (EE(d21JYn_I)) 1/2 ;.-.~E,Idn[I p, 

where the above equivalence depends on p. (See [B] and also [JMST] where 

several related applications of Burkholder's theorem are presented.) Now we 

are going to evaluate separately the two expressions on the right hand side of 

Burkholder's theorem. We begin with ]Idol] p. Recall that  I M J = 0 implies that 

supp  gI Cl supp  gI -~ O. Hence 

Ildnll~= ~ lasl p- 
{/:111=2-"} 

Next recall that 

IIg/ll~ = I suppg/I = x~. ISl. 
This gives that  

E ( d ~ l . r , , _ l )  = a~E(g~l'Fn-1) 
U:lrl=2-"} x4si~'. ISl2/p" 
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Now we seek an expression for E(g~iPn-1)- Note that for the dyadic interval 

I,  with ]I[ = 2 -n,  there exists a uniquely determined dyadic interval I* with 

[I*[ = 2 -n+l ,  which contains I. Next we observe that by construction that we 

have 

E(g~iYn- , )  : ~x~ lc , . .  

Inserting in the previous identity gives 

\ I/2NP 
( ~  E(d2i~'n-1)) p"'~ ( E  E n aTx2-4/PI ,~2/p)lC*" .~ 1/2[ pl 

n {,:1,1=2- } . p  

Finally, we use the tree structure of the sets {CI* } and the square function norm 

on L p to conclude that 

(~n E 2 2--4/P ]C1" "~I/2HP D 1--2/p hi I 
{i:lil=2_n} alxI ISl 2/p) lip ~ 2--"a'*' IIh, l l ~  " 

Summing up we showed that 

E gI P ~"~ 1-2/p hi i 
a s ~  v ~  Z - , u s z '  Ilh, ll---7 + ~J-~"lallP' 

as claimed. I I  

We identify S p with the closed subspace of L p @ ~P that is spanned by the 

system 

d1 = x~ -2/p hi 
IIh/llp me,, 

since for a linear combination ~ aidi  the norm in L p @ gP is calculated as follows, 

aids p .. 1-2/p hr i = eoix I - -  + Elall  p. E LPOeP E IIhiII p 

With the remark preceding the formulation of Theorem 3 we obtained that  S p is 

isomorphic to a complemented subspace of L p. In that  way we recoverd the result 

of D. Kleper and G. Schechtman. Now we continue classifying the isomorphic 

types of these spaces. What  follows is a close examination of the stopping time 

decomposition {7/K : / (  E g}, defined in the proof of Theorem 2. We use the 

notation lim sup g to denote the set of all points that are contained in infinitely 

many intervals of the collection g. 
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THEOREM 4: Let xs C R be a sequence with ]xs[ _< 1. Then the infinite dimen- 

sional space S p is either isomorphic to L p or to fP. I f  1 l imsup£ 1 > 0 then SP is 

isomorphic to L p, and i f  [ lim sup $[ = 0 then SP is isomorphic to fP. 

Proof: We begin with the proof of the second assertion. We show that  if 

[lim sup $[ = 0, then the identity map Id: (span{g/}, [[. [Ip) -+ Lp factors through 

£P. Here we rely on a theorem of W. B. Johnson asserting that such a factorization 

exists when the identity operator with range in L 2, 

Id: (span{gs}, [[. [iv) -+ Lp -+ L2, 

is a compact operator. (See [J].) 

Using that [ limsupE[ = 0 we will now verify that W. B. Johnson's criterion is 

satisfied. Let Rn: L 2 --+ L 2 be the orthogonal projection onto 

span{ha-: IKI_ 2-n}. Let 

Y -- E algl ,  

with [[y[ip < o~. We compare the ratio of [[Rn(y)[[2 to [[y[[p as follows. We 

consider the support set of R~(y) and put 

Fn = supp Rn (y). 

Then a moment's reflection shows that 

lim levi <_ Il imsupEI -- 0. 
u - + o ( 5  

Next we apply HSlder's inequality, and the fact that  the basis constant of the 

Haar system in L p equals one. This gives the following estimates, 

[IRn(y)ll2 <IIR~(y)IIp" IF~I ~12-~1; 

<llyllp" IGI  i2-Lip. 

Summing up we proved that for y = ~ asgs, 

lim [[Rn(Y)I[2 <_ lira [[y[[p. [Fn[ 1/2-1/p = O. 
n - - k  O o  ~t  - - ~  O o  

This shows compactness for the identity map Id: (span{gr}, [1" lip) --+ L2. Hence 

by the factorization theorem of W. Johnson, Id: (span{gs}, I1" lip) -+ Lp factors 

through gP. 

Now we prove that (span{gs}, ][" []p) contains a complemented copy of L p 

when the measure of lira sup £ is strictly positive. We follow the proof in [M]. 

If [limsupE[ > 0, then we may apply the basic step of the Gamlen-Gaudet 
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construction infinitely many times. Having done this we obtain 2da C g, for J 

dyadic, so that  the following conditions are satisfied. 

1. Let I C J and let Xr be the pointset covered by the collection XI. Then 

for K E B j ,  

(1/2)1/Cl. III <_ I J l  IXI n / e l  _< 21KI-IZl. 

2. If XI N X j  ¢ 0, then either XI C_ X j  or X j  C_ Xz. 
3. If X j  C XI, then J C_ I. 

4. IAI. IJI/2 <_ IXjI _< 21AI. IJI- 
In this way we constructed a dyadic tree of infinte depth. Now define for any 

dyadic interval J ,  

E Eg . 
h'EXj L E ~ -  

In the course of proving Theorem 2 we showed that the orthogonal projection Q 

defined by 

Q(Y) = E (Y' GI GI 

satisfies 

IIQ(Y)IIBMO < 41IYIIBMo, 

for y C span{g j}.  Recall also that the orthogonal projection 

P(f)---- E I f, O'qI gI 
I 

is a bounded operator on BMO. Hence the composition defined by 

S(g) = Q(P(g)) 

is a bounded operator from BMO to BMO. Clearly S is also an operator of norm 

one from L 2 to L 2. Hence by interpolation between BMO and L 2, we obtain 

boundedness on L p, 2 <_ p < oc, 

IIS(g)llp = IIQ(P(g))IIp <- cpllgllp. 

Now we evaluate the boundedness of S on span{g/}. For y E span{gi} we have 

clearly that P(y) = y, hence Q(y) = S(y). Summing up we showed that  by 

interpolation between BMO and L 2, 

IIQ(y)IILp <~ CpllYlILp, 

for y C span{gj }. Hence (span{Gj }, I1" lip) is complemented in (span{g j}, I1" lip)- 
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We prove next that  in L p, 2 _< p < c~, the system {G j} is equivalent to the 

Haar system. This will show that L p is isomorphic to a complemented subspace 

of (span{gg}, 1]-lip), and by Theorem 3 that L p is isomorphic to a complemented 

subspace of $P. Now fix a sequence of scalars, {a j } ,  then put 

y -- ~ a j G j .  

Let fn = E(Yl.7"n) be the conditional expectation with respect to the sequence 

of a-algebras ~rn defined earlier in this section. With Burkholder's theorem we 

evaluate the norm of y in LP,p > 2. We have 

( ]lyltp p ~  ~ E ( ( f n  -fn+l)2l.Tn-1) + ~ Ilfn --fn+lliPp, 

where the above equivalence depends on p. Now we unwind the definition of Gj 
and obtain a pointwise identity for the integrand of the first expression appearing 

in Burkholder's theorem, 

F_,F'((:.-:.+,)':~-,>=Z4 F, ~ 41~.. 
n J K E , ¥ j  LET"IK 

Now we evaluate the second term in Burkholder' s theorem. We have that 

Z ii:~- :n+:ti~ = Z i~i ~ Z )--; x~HLI 
J KEXj LE?-IK 

~ ~  lajl~lXjI 
J 

J 

Next, we observe that for any t E l imsupg,  we have the following pointwise 

estimates, 

½1c. (t) <_ Z x~:c.  (tl ~ 21c~. (tl. 
LE?'IK 

With these observations we obtain that 

a 2 ~ ~ XLIcL. )  lip 
KEXj LE?-IK 

Finally, recall that for p _> 2, 

ashj i -> ~ ~-;~ la,,l'~lJI. 
J 
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Inserting these estimates back into Burkholder's theorem gives the equivalence 

LlylIp ~ E a J h J  

Summing up we showed that ,SP contains a complemented copy of L p when 

I limsup£1 > 0. On the other hand, by Theorem 3 and its preceding remark 

we know that  S p is isomorphic to a complemented subspace of L p. Hence, 

by Pelczynski decomposition, we showed that `SP is isomorphic to L p when 

[ lim sup £1 > O. | 

4. C o m p l e m e n t e d  subspaces  o f  V M O  

VMO is the norm closure of the set of finite linear combinations of Haar functions 

in BMO. Defined that way VMO is a separable space. Hence the space VMO has 

stronger ties to the scale of L p spaces than BMO. In the classification problems 

considered in this section these ties can be observed easily. 

We define the separable version of S ~  as follows. We say that a null sequence 

(ai) belongs to S ° if ~ arxrhl E VMO,  and we put 

I1(al)118° = E x I a I h I  VMo+SUplalI" 

The proof of Theorem 1 shows that ,S o is a complemented subspace of VMO. We 

will now determine the isomorphic types of ,So. 

THEOREM 5: For every sequence of scalars {xi} with Ix1 _~ 1, the infinite di- 
mensional space S ° is isomorphic either to Co, to (~-~BMOn)o, or to VMO. 

If  ~ xzhi E BMO, then `so is isomorphic to co. If  ~ xihr ~ BMO, and 

I limsup£1 = 0, then `so is isomorphic to (~-~ BMO~)o; if I l imsup£ I > 0 then `so 
is isomorphic to VMO. 

Proof'. We merge the proofs of Theorems 2 and 4. 

If ~ xihz E BMO, then the proof of Theorem 2 shows that S O is isomorphic 

to Co. 

If ~ x l h i  ~ BMO, then the proof of Theorem 2 shows that S ° contains a 

complemented subspace isomorphic to ( ~ B M O n ) o .  If [ l imsup£ I = 0, then 

we apply the VMO version of Johnson's faetorization proved in [MS]. Indeed, 

when I l imsup£t = 0, we observe easily that the identity operator with range 

in L 2, Id: (span{gt) , l l"  IIVMO) -4 VMO -+ L 2, is a compact operator. The 

factorization theorem in [MS] asserts that  then the identity operator with range 
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in VMO, Id: (span{g/}, l I" [[VMO) --+ VMO, factors through ( E  BMOn)0. Hence, 

by the Pelczynski decomposition principle, S ° is isomorphic to ( ~  BMOn)o, when 

[ l imsupS] = 0 and Y~Xlhi  ~ BMO. 

Finally, let [ l imsupg[ > 0. Then we construct the system {G j }  as in the proof 

of Theorem 4. The estimates in the proof of Theorem 2 show that 

the orthogonal projection onto span{G j}  is a bounded operator on V M O .  

Moreover, the Haar basis is equivalent to the system {G j }  in VMO. Hence 

(span{gl}, l ["  IIVMO) contains a complemented copy of VMO, namely 

(span{G j},  []. IlVMO). By Pelczynski decomposition, we have proved that S0 

is isomorphic to VMO. | 

[B] 

[CG] 

[J] 

[JMST] 

[KS] 
[LT] 

[M] 

[MS] 

[MS 2] 

[w] 

[w 2] 
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